En	rollment No		Exam Seat No:		
		C.U.SHAH	UNIVERSITY		
		Winter Exa	mination- 2022		
Sul	bject Name:	Group Theory			
Sul	bject Code: 5	SSC02GRT1	Branch: M.Sc. (Mathematics)		
Ser	nester: 2	Date: 20/09/2022	Time: 11:00 To 02:00	Marks: 70	
	(2) Instruct(3) Draw no	ions written on main answer beat diagrams and figures (if no suitable data if needed.	any other electronic instrument is book are strictly to be obeyed. ecessary) at right places. TION – I	prohibited.	
Q-1	Attem	pt the Following questions		(07)	
	c. Defined. If (<i>G</i>,*	: Cyclic group. : Coset.) is a group and a , $b \in G$ then	In prove that $(a * b)^{-1} = b^{-1} * a^{-1}$ of $a, b \in G$ then prove that G is about	1 1 1 -1 2 elian. 2	
Q-2	a) If $G =$	pt all questions $ \begin{cases} \begin{bmatrix} a & a \\ a & a \end{bmatrix} / a \text{ is non zero red} \\ \text{lication.} $	al number $\}$ then prove that G is g	group under (14)	
	b) If (<i>G</i> ,* (i) <i>o</i> (<i>a</i>	be a group and $o(a) = n$ th q > o(a) for any integer q . $q^{-1} = o(a)$.		5	
		a subgroup of a group G then	prove that the set $x^{-1}Hx$ is a sub	group of G 4	

		(ii) $\theta(a - b) = \theta(a)$.	
	c)	If H is a subgroup of a group G then prove that the set $x^{-1}Hx$ is a subgroup of G	4
		for $x \in G$.	
		OR	
Q-2		Attempt all questions	(14)
	d)	Define: Quaternion group. Prove that it is group under multiplication.	5
	e)	Prove that any two right cosets of a subgroup are either disjoint or identical.	5
	f)	Prove that the group of prime order is cyclic.	4
Q-3		Attempt all questions	(14)
	a)	State and prove Lagrange's theorem	5
	b)	If a cyclic subgroup T of G is normal in G then prove that every subgroup of T is	5

c) Define: Congruence relation. Prove that the congruent relation is an equivalent

normal in G.

relation.

OR

4

Q-3	a)	Define quaternion group. Prove that it is group under multiplication.	5		
	b)	Let K is a subgroup and H is normal subgroup of a group G . Then prove that	5		
		$K \cap H$ is normal subgroup of K .			
	c)	How many generators are there of the cyclic group of order 8?	4		
		SECTION – II			
Q-4		Attempt the Following questions	(07)		
	a.	Define: p – sylow subgroup.	1		
	b.	Define: Internal Direct product.	1		
	c.	Define: Conjugate of element in group.	1		
	d.	Let G be a group with order 12. Does there exists a subgroup of order 5? Justify	2		
		your answer.	_		
	e.	Define: Cycle decomposition.	2		
Q-5		Attempt all questions	(14)		
	a)	State and prove fundamental theorem of homomorphism.	7		
	b)	List all conjugate classes in S_3 , find c'_a s for each class.	5		
	c)	Let G be a group and ϕ is an automorphism of G. If $\alpha \in G$ is of order	2		
		$o(a) = n > 0$ then prove that $o(\phi(a)) = o(a)$.			
		OR			
Q-5	a)	Prove that each permutation $f \in S_n$ can be expressed as a composition of disjoint cycles.	6		
	b)	Let G be group. For a fixed element g in G, define $\phi : G \to G$ by	5		
		$\phi(x) = gxg^{-1}$. Prove that is ϕ an isomorphism of G on to G .	2		
	c)	Prove that the order of the set of all even permutation in S_n is $\frac{n!}{2}$ for $n \ge 2$.	3		
Q-6		Attempt all questions	(14)		
_	a)	State and prove Cayley's theorem.	7		
	b)	If G_1 and G_2 are groups then prove that sets $G_1 \times \{e_2\}, \{e_1\} \times G_2$ are normal	5		
		subgroups of $G_1 \times G_2$. Also prove that $G_1 \times \{e_2\} \cong G_1$ and $\{e_1\} \times G_2 \cong G_2$.			
	c)	If order of group is 49, then prove that G is abelian.	2		
		OR			
Q-6		Attempt all Questions			
	a)	State and prove Sylow's theorem	7		
	b)	Let G be a group and suppose G is the internal direct product of $N_1, N_2,, N_n$. Let $T = N_1 \times N_2 \times \times N_n$. Then prove that G and T are isomorphic.	5		
	c)	How many conjugate classes in S_4 ?	2		

